Eric Galapon

From Iskomunidad
Revision as of 17:13, 21 January 2015 by Akorden (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Publications

  • J. Bunao. and E. Galapon. The Bender-Dunne basis operators as Hilbert space operators. J. Math. Phys. 55, 022102 (2014)
  • E. A. Galapon and K. M. L. Martinez. Exactification of the Poincare asymptotic expansion of the Hankel integral: spectacularly accurate asymptotic expansions and non-asymptotic scales. Proc. R. Soc. A 8 February 2014 vol. 470 no. 2162 20130529.
  • Galapon, E.A. Only above energy components contribute to barrier traversal time. Phys. Rev. Let. 108, 170402 (2012).
  • Sombillo, D.L.B. and Galapon, E.A. Quantum Time of Arrival Goursat Problem. J. Math Phys. 53, 043702 (2012)
  • A. D. Villanueva and E. A. Galapon. Generalized crossing states in the interacting case: The uniform gravitational field. Phys. Rev. A 82, 052117 (2010).
  • R.C.F. Caballar, L.R. Ocampo, and E.A. Galapon. Characterizing Multiple Solutions to the Time - Energy Canonical Commutation Relation via Internal Symmetries. Phys. Rev. A 81, 062105 (2010).
  • E.A. Galapon. Quantum wave packet size effects on neutron time of flight spectroscopy. Rapid Communications: Phys. Rev. A 80, 030102 (2009).
  • R.Caballar and E.A. Galapon. Characterizing multiple solutions of the time-energy-canonical commutation relation via quantum dynamics. Phys. Let. A 373 (2009) 2660.
  • E.A. Galapon. Delta Convergent Sequences that Vanish at the Support of the Limit Dirac Delta Function. J. Phys. A: Math. Theor. 42 (2009) 175201.
  • E.A. Galapon. Theory of Quantum Arrival and Spatial Wave Function Collapse on the Appearance of Particle. Proc. Roy. Lond. A 465 (2009) 71.
  • E.A. Galapon. Comment on 'Almost-periodic time observables for bound quantum systems.' J. Phys. A: Math. Theor. 42 (2008) 018001.
  • E.A. Galapon and A. Villanueva. Quantum First Time of Arrival Operators. J. Phys. A: Math. Theor. 41 (2008) 455302.
  • R. Vitancol and E.A. Galapon. Application of Clenshaw-Curtis method in confined time of arrival operator eigenvalue-problem. Int. J. Mod. Phys. C. 19 (2008) 821.
  • E.A. Galapon. Theory of quantum first time of arrival via spatial confinement I: Confined time of arrival operators for continuous potentials. Int. Jour. Mod. Phys. A. 21, 6351 (2006).
  • E.A. Galapon, R. Caballar, and R. Bahague. Confined time of arrivals for vanishing potential. Phys. Rev. A. (2005).
  • E.A. Galapon, F. Delgado, J.G. Muga, I. Egusquiza. Transition from discrete to continuous time of arrival distribution for a quantum particle. Phys. Rev. A 74, 042107 (2005).
  • E.A. Galapon, R.F. Caballar, R.T. Bahague. Confined Quantum Time of Arrivals. Phys. Rev. Let 93, 180406 (2004).
  • E.A. Galapon. Shouldn't there be an antithesis to quantization? Jour. Math. Phys. 45, 3180-3215 (2004).
  • E.A. Galapon. Self-adjoint Time Operator is the Rule for Discrete Semibounded Hamiltonians. Proc. R. Soc. Lond. A 487, 2671-2689 (2002).
  • E.A. Galapon. Pauli's Theorem and Quantum Canonical Pairs: The Consistency Of a Bounded, Self-Adjoint Time Operator Canonically Conjugate to a Hamiltonian with Non-empty Point Spectrum. Proc. R. Soc. Lond. A 458, 451-472 (2002).
  • E.A. Galapon. Quantum-Classical Correspondence of Dynamical Observables, Quantization and the Time of Arrival Correspondence Problem. Opt. and Specs. 91, 399 (2001).